

Erasmus+ Project No: 2018-1-PL01-KA203-050803

IO2: Data Exchange Format for Gamified Programming
Exercises

Version 1.0

IO2: Data Exchange Format for Gamified Programming Exercises

Document Manager

Jakub Swacha US

Document Version: 1.0 Date: 2020-02-03

Published Filename: FGPE_IO2_Data_Exchange_Format_for_Gamified_Programming_Exercise
s.pdf

Intellectual Output IO2

Storage location / link

License

This work is licensed under a ​Creative Commons Attribution 4.0 International License​.

Disclaimer
The information in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.
The contents of this document are the sole responsibility of its authors and can in no way be taken to
reflect the views of the European Union, the Erasmus Plus programme or its National Agencies.

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

2

https://creativecommons.org/licenses/by/4.0/

IO2: Data Exchange Format for Gamified Programming Exercises

The FGPE Consortium consists of the following partners
Participant no. Participant organization name Short name Country

1 University of Szczecin US Poland
2 CRACS University of Porto CRACS Portugal
3 Aalborg University Copenhagen AAU Denmark
4 University of Napoli Parthenope UNP Italy

Revision history

Version Author Notes Date
0.1 José C. Paiva (CRACS)

Ricardo Queirós (CRACS)
José Paulo Leal (CRACS)

Initial version of IO2: Data
Exchange Format for Gamified
Programming Exercises.

October 09, 2019

0.2 Sokol Kosta (AAU) Revision of the document. January 31, 2020
1.0 Jakub Swacha (US) Technical corrections. February 3, 2020

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

3

IO2: Data Exchange Format for Gamified Programming Exercises

Table of Contents
Executive Summary 5

Introduction 5
Background 5
Purpose 5
Scope and related documents 6
Acknowledgements 6

Programming Exercises Format - YAPExIL 7
Metadata Facet 7
Presentation Facet 8
Assessment Facet 8
Tools Facet 8

Gamified Programming Education Format - GEdIL 9
Structure of the Format 9

Gamification Layer Definition 9
Challenge Definition 10
Reward Definition 10
Rule Definition 11
Leaderboard Definition 11

Requirements Fulfillment 12
Gamification Concepts Related to Course Organization 12
Gamification Concepts Related to Goals Definition 12
Gamification Concepts Related to Definition of Rewards 13
Types of Conditions Upon Which Rewards Are Granted 14
Gamified Programming Exercise Types 14
Gamified Programming Exercise Modes 15
Badges Granted on Exercise-level 15
Types of Challenges Spanning Beyond a Single Programming Exercise 16
Badges Available on Course-level 17

Appendices 17
Partial Implementation for Fill-in the Gap Exercise 17
Partial Implementation for Mixed Code Exercise 18
Partial Implementation for Show Me Exercise 19
Partial Implementation for Spot the Bug Exercise 20

References 21

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

4

IO2: Data Exchange Format for Gamified Programming Exercises

1. Executive Summary
This document provides a description of the data formats defined for describing gamified
programming exercises. Two distinct definitions are elaborated. One is a JSON format based on an
existing XML dialect ​[1] for describing programming exercises. The other is a JSON format to design
the gamification layer put on top of the programming exercises, creating a gamified programming
curriculum.
These formats are a direct result of the work done during the second phase of the Framework for
Gamified Programming Education project, consistent with the gamification scheme identified in the
first phase. They constitute a necessary base for the development of further project outputs, primarily,
for building the tools that will allow to create gamified programming courses adhering to them.
Section 2 provides more details on this document’s background, purpose and scope. Section 3 presents
the properties supported by the extended data format for describing programming exercises without
gamification-related data, and how it differs from the base format ​[1]​. Section 4 describes the data
format for building a gamification layer for gamified programming courses.

2. Introduction

2.1 Background
The combined use of automated assessment, which provides fast feedback to the students
experimenting with their code, and gamification, which provides additional motivation for the students
to intensify their learning effort, can help pass the barrier of difficulty in learning programming. In
such an environment, students keep receiving the relevant feedback no matter how many times they try
(thanks to automated assessment) and their engagement is retained (thanks to gamification).
Learning programming relies on practicing. While there are a number of open software and
programming exercise collections supporting automated assessment, up to this date, there are no
available open collections of gamified programming exercises, no open interactive programming
learning environments to support such exercises, and even no open standards for the representation of
such exercises so that they could be developed by different educational institutions and shared among
them.
Therefore, the primary objective of the Framework for Gamified Programming Education (FGPE)
project is to provide a framework for application of gamification to programming education, including
the necessary specifications (of the gamification scheme and the exercise definition format), collection
of gamified exercises (for popular programming languages), and software (a toolset for editing
exercises and an interactive learning environment for the students to solve them).

2.2 Purpose
To share gamified programming exercises among different universities and courses requires a common
data format. Inclusion of elements such as the challenge definition, including the optional modifiers to
adapt its difficulty, the interactive story layer, including the links to other exercises; and the award
definition in terms of points, badges, and virtual items in the Data Exchange Format for Gamified
Programming Exercises will allow the exchange of ready-to-use programming exercises along with the
gamification-related data among different universities and courses, which makes it an important
innovation in programming education with a high practical impact, as it will help save a lot of
instructors’ time that they would otherwise had to spend on defining the gamification rules themselves.

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

5

IO2: Data Exchange Format for Gamified Programming Exercises

The purpose of this document is to present the developed data format. According to the best of our
knowledge, there are several formats for defining programming exercises but none of them supports
gamification-related data. Furthermore, the existing formats do not support all the different types of
programming exercises identified in the first phase of this project. Hence, the authors decided to split
the formatization of gamified programming exercises in two layers: a programming exercise layer and
a gamification layer. The programming exercise layer extends an existing format ​[1] to support each of
the previously identified types of programming exercises, without gamification-related data. The
gamification layer is a completely new data format that couples with those programming exercises to
create a gamified course curriculum.

2.3 Scope and related documents
This document covers the definition of the data interchange format for gamified programming
exercises and courses. Section 3 presents the properties supported by the extended data format for
describing programming exercises without gamification-related data, and how it differs from PExIL
[1]​. Section 4 describes the data format for building gamification layers to gamify programming
courses.
As gamification is a rapidly developing field, the contents of this document are subject to change in
future. Please consult the FGPE project website (http://fgpe.usz.edu.pl) for its up-to-date version.
This document is based on the Gamification Scheme for Programming Exercises document ​[6]​, which
covers the relevant gamification concepts for programming education (published in May 2019).
This document does not cover the documentation of the tools supporting editing and conversion of
gamified programming exercises, which is to be covered in the Tools Supporting Editing and
Conversion of Programming Exercises document (scheduled for February 2020).
This document does not cover the documentation of the online platform providing gamified
programming courses, which is to be covered in the Programming Learning Environment featuring
Gamified Exercises document (scheduled for July 2020).
This document does not cover the presentation of the gamified programming exercises developed
within the FGPE project, which is to be covered in the Programming Courses featuring Gamified
Exercises document (scheduled for February 2021).

2.4 Acknowledgements
This document is a direct result of the work done within the Framework for Gamified Programming
Education project supported by the European Union’s Erasmus Plus programme (agreement no.
2018-1-PL01-KA203-050803).
Although the editors of this document are listed on page 3, its content reflects the results of the
intellectual work of all the involved project team members:

● on behalf of University of Szczecin: Jakub Swacha, and Karolina Muszyńska,
● on behalf of CRACS University of Porto: Ricardo Queirós, José C. Paiva, and José Paulo

Leal,
● on behalf of Aalborg University Copenhagen: Sokol Kosta and Reza Tadayoni,
● on behalf of University of Napoli Parthenope: Raffaele Montella.

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

6

IO2: Data Exchange Format for Gamified Programming Exercises

3. Programming Exercises Format - YAPExIL
This section details the format developed for describing programming exercises - the ​Y​et ​A​nother
P​rogramming ​Ex​ercises ​I​nteroperability ​L​anguage (YAPExIL) ​[3]​. This format is partially based in
the XML dialect PExIL ​[1]​, but (1) it is a JSON format instead of XML, (2) removes support for
automatic test generation, and (3) supports different types of programming exercises (e.g., solution
improvement, bug fix, gap filling, block sorting, and spot the bug).

YAPExIL can be broken down into four distinct facets: ​metadata​, which contains simple properties
providing information about the exercise; ​presentation​, which relates to what is presented to the
student; ​assessment​, which encompass what is used in the evaluation phase; and ​tools​, which includes
any additional tools that the author may use in the exercise.

3.1 Metadata Facet
Table 3.1 Metadata Facet

Property Description

ID Universally Unique Identifier (UUID) of the exercise.

Title Title of the exercise.

Module Module in which the exercise is in (description of its main topic).

Author Author of the exercise.

Keywords Set of keywords of the exercise.

Type The type of programming exercise to be solved. Possible values:
BLANK_SHEET, EXTENSION, IMPROVEMENT, BUG_FIX,
FILL_IN_GAPS, SORT_BLOCKS, SPOT_BUG.

Event Event at which the exercise was created (if any).

Platform Platform requirements (if any).

Difficulty Difficulty of the exercise. Possible values: BEGINNER, EASY,
AVERAGE, HARD, MASTER.

Status Status of the exercise. Possible values: DRAFT, PUBLISHED,
UNPUBLISHED, TRASH.

Creation Date Date of creation of the exercise.

Last Update Date Date of the last update to the exercise.

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

7

IO2: Data Exchange Format for Gamified Programming Exercises

3.2 Presentation Facet
Table 3.2 Presentation Facet

Property Description

Instructions Instructions to teachers about the exercise.

Statements The statement of the exercise to present to the student in the various
languages.

Embeddables Images, videos, and other files that can be embedded in the statement.

Skeletons Part of a solution that is provided to the students.

3.3 Assessment Facet
Table 3.3 Assessment Facet

Property Description

Templates Part of a solution that wraps students' code without their awareness.

Libraries Code libraries that can be used by solutions, either in compilation or
execution phase.

Static Correctors External programs that are invoked before dynamic correction to
classify/process the program's source code.

Dynamic Correctors External programs that are invoked after the main correction to classify
each run.

Solutions Solutions provided by the author(s) of the exercise.

Tests Set(s) of test cases to validate if attempts are correct.

3.4 Tools Facet
Table 3.4 Tools Facet

Property Description

Feedback Generators External programs that generate the feedback to give to the student about
his/her attempt to achieve a solution.

Test Generators External programs that generate the test cases to validate a solution.

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

8

IO2: Data Exchange Format for Gamified Programming Exercises

4. Gamified Programming Education Format - GEdIL
This section presents the data format for describing gamified programming course materials - the
G​amified ​Ed​ucation ​I​nteroperability ​L​anguage (GEdIL) ​[4]​. This data format aims to accomplish the
requirements identified in a research work ​[2] conducted for this specific purpose. Those requirements
are identified at two levels, exercise-level (those whose scope can be narrowed down to a single
exercise) and course-level (those with a broader context).
However, the strategy followed was not a direct fulfilment, but rather a separation of what pertains to a
programming exercise and what only makes sense in a gamified curriculum (i.e., the gamification
layer). This means that programming exercises will still adhere to the YAPExIL definition, as
exercise-level gamification requirements are met in a separate layer that links to non-gamified
exercises. Hence, this modular approach allows the programming exercises to be reused without
gamification (i.e., used in non-gamified contexts) or reused with different gamification layers.

4.1 Structure of the Format
GEdIL can be divided into five main definitions: ​gamification layer​, which is the root of the
definition and contains objects with a global context; ​challenge​, which the basic unit of a gamified
programming course (it can be a leaf challenge if it references exercise(s) or a branch challenge if it
references other challenge(s)); ​reward​, which is something given to users who achieve a certain goal;
rule​, which allows the definition of actions to be executed if a certain criteria is met; and
leaderboard​, which is an ordered set of metrics according to which players will be sorted.

4.1.1 Gamification Layer Definition
Table 4.1.1 Gamification Layer Definition

Property Description

ID UUID of the gamification layer.

Name Name of the gamification layer.

Description Description of the gamification layer.

Keywords Keywords of the gamification layer.

Status Status of the gamification layer. Possible values: DRAFT, PUBLISHED,
UNPUBLISHED, TRASH.

Rules Set of rules on the top-level.

Leaderboards Set of leaderboards on the top-level.

Rewards Set of rewards given on the top-level.

Challenges Set of top-level challenges.

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

9

IO2: Data Exchange Format for Gamified Programming Exercises

4.1.2 Challenge Definition
Table 4.1.2 Challenge Definition

Property Description

ID UUID of the challenge.

Name Name of the challenge.

Description Description of the challenge.

References Reference to non-gamified exercises of this
challenge.

Mode The mode in which the programming exercise
should be solved. Possible values: NORMAL,
SHAPESHIFTER, SHORTENING, SPEEDUP,
HACK_IT, TIME_BOMB, DUEL.

Mode Parameters Parameters to adjust the challenge according to
the mode (e.g., threshold number of lines,
threshold execution time, or time of the bomb).

Locked Is the challenge initially locked?

Hidden Is the challenge initially hidden?

Difficulty Difficulty of the challenge. Possible values:
BEGINNER, EASY, AVERAGE, HARD,
MASTER.

Feedback Generators External programs that generate the feedback to
give to the student when the challenge is
complete.

Rules Set of rules on the challenge-level.

Rewards Set of rewards given on the challenge-level.

Leaderboards Set of leaderboards in the challenge.

Children Sub-challenges of this challenge.

4.1.3 Reward Definition
Table 4.1.3 Reward Definition

Property Description

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

10

IO2: Data Exchange Format for Gamified Programming Exercises

ID UUID of the reward.

Name Name of the reward.

Description Description of the reward.

Kind Type of reward. Possible values: POINT,
BADGE, VIRTUAL_ITEM, COUPON,
REVEAL, UNLOCK, HINT, MESSAGE.

Amount Quantity of the reward (if applicable).

Unlockables List of resources that get unlocked (if
applicable).

Revealables List of resources that get revealed (if
applicable).

Hints Messages that help solving the challenge (if
applicable).

Congratulations Messages to congratulate the user (if
applicable).

Criteria Conditions to obtain this reward.

4.1.4 Rule Definition
Table 4.1.4 Rule Definition

Property Description

ID UUID of the rule.

Name Name of the rule.

Criteria Conditions to activate this rule.

Actions List of actions to execute (GIVE, TAKE,
UPDATE, ...) if rule is activated (actions may
have parameters).

4.1.5 Leaderboard Definition
Table 4.1.5 Leaderboard Definition

Property Description

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

11

IO2: Data Exchange Format for Gamified Programming Exercises

ID UUID of the leaderboard.

Name Name of the leaderboard.

Metrics Set of metrics considered in this leaderboard,
sorted by importance.

Sorting Orders List with |metrics| elements, consisting of the
sort direction (ASC or DESC) for that metric.

4.2 Requirements Fulfillment
The next sub-subsections describe how requirements of each specific concept are fulfilled.

4.2.1 Gamification Concepts Related to Course Organization
Table 4.2.1 Fulfillment of requirements from gamification concepts related to course
organization

Concept Fulfillment

Course Module YAPExIL has a “module” field (see ​3.1​).

Exercise Type YAPExIL has a “type” of exercise field (see ​3.1​).

Exercise Mode GEdIL supports “mode” and “mode parameters” in Challenge (see ​4.1.2​).
Furthermore, a Challenge may be just an envelope for a single exercise by
referencing it.

Locked Content GEdIL has a “locked” property in Challenge (see ​4.1.2​).

Secret GEdIL has a “hidden” property in Challenge (see ​4.1.2​).

Difficulty Level GEdIL has a “difficulty” property in Challenge (see ​4.1.2​). Challenge is a
tree, hence every branch may have a different difficulty level.

4.2.2 Gamification Concepts Related to Goals Definition
Table 4.2.2 Fulfillment of requirements from gamification concepts related to goals definition

Concept Fulfillment

Challenge GEdIL has Challenge (see ​4.1.2​).

Requirements Overall requirement is to solve the challenge, which includes solving the
referenced exercises in a specific mode (see ​4.1.2​). Each exercise may
define certain requirements through the Assessment Facet (see ​3.3​).

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

12

IO2: Data Exchange Format for Gamified Programming Exercises

Quest A Challenge in GEdIL may reference multiple exercises and define its
rules and rewards (see ​4.1.2​).

Streak Rules in GEdIL may be attached to the Course (see ​4.1.1​ and ​4.1.4​).

Record Multiple Leaderboards may be created according to certain metrics and
attached to the course (see ​4.1.1​ and ​4.1.5​).

4.2.3 Gamification Concepts Related to Definition of Rewards
Table 4.2.3 Fulfillment of requirements from gamification concepts related to definition of
rewards

Concept Fulfillment

Point GEdIL defines a Reward with “type” (which can be POINT) and “amount”
properties (see ​4.1.3​).

Level A Gamification Layer in GEdIL can have attached Rules to deal with level
progression (see ​4.1.1​ and ​4.1.4​).

Held Record GEdIL defines a Leaderboard and means to attach them to Gamification
Layer and Challenge (see ​4.1.1​, ​4.1.2​, and ​4.1.5​).

Current Rank GEdIL defines a Leaderboard and means to attach them to Gamification
Layer and Challenge (see ​4.1.1​, ​4.1.2​, and ​4.1.5​).

Badge GEdIL defines a Reward with “type” (which can be BADGE) and “name”
(to specify the badge) properties (see ​4.1.3​).

Virtual Item GEdIL defines a Reward with “type” (which can be VIRTUAL_ITEM),
“name” (to specify the virtual item), and “amount” properties (see ​4.1.3​).

Coupon GEdIL defines a Reward with “type” (which can be COUPON), “name”
(to specify the coupon), and “amount” properties (see ​4.1.3​).

Content Discovery GEdIL defines a Reward with “type” (which can be REVEAL) and
“revealables” properties (see ​4.1.3​).

Content Unlock GEdIL defines a Reward with “type” (which can be UNLOCK) and
“unlockables” properties (see ​4.1.3​).

Hint GEdIL defines a Reward with “type” (which can be HINT) and “hints”
properties (see ​4.1.3​).

Congratulations GEdIL defines a Reward with “type” (which can be MESSAGE) and
“congratulations” properties (see ​4.1.3​).

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

13

IO2: Data Exchange Format for Gamified Programming Exercises

4.2.4 Types of Conditions Upon Which Rewards Are Granted
Table 4.2.4 Fulfillment of requirements of the types of conditions upon which rewards are
granted

Concept Fulfillment

Attempt Rules in GEdIL may be attached to the Challenge and give a Reward (see
4.1.2​ and ​4.1.4​).

Achievement Rewards in GEdIL may be attached to the Challenge (see ​4.1.2​).

Failure Rules in GEdIL may be attached to the Challenge and give a Reward on
failure (see ​4.1.2​ and ​4.1.4​).

Progress threshold Rules in GEdIL may be attached to the Gamification Layer and give a
Reward (see ​4.1.1​ and ​4.1.4​).

Progress in
competition

Leaderboards in GEdIL may be attached to the Gamification Layer (see
4.1.1​ and ​4.1.5​).

4.2.5 Gamified Programming Exercise Types
Table 4.2.5 Fulfillment of requirements of gamified programming exercises types

Concept Fulfillment

Blank sheet YAPExIL has a “type” of exercise field, which can be BLANK_SHEET
(see ​3.1​) and the Assessment Facet specifies the requirements (see ​3.3​).

Code extension YAPExIL has a “type” of exercise field, which can be EXTENSION (see
3.1​), a “skeleton” field to set the initial code (see ​3.2​), and the Assessment
Facet specifies the requirements (see ​3.3​).

Code improvement YAPExIL has a “type” of exercise field, which can be IMPROVEMENT
(see ​3.1​), a “skeleton” field to set the initial code (see ​3.2​), and the
Assessment Facet specifies the requirements (see ​3.3​).

Buggy code YAPExIL has a “type” of exercise field, which can be BUG_FIX (see ​3.1​),
a “skeleton” field to set the initial code with bugs (see ​3.2​), and the
Assessment Facet specifies the requirements (see ​3.3​).

Fill-in the gap YAPExIL has a “type” of exercise field, which can be FILL_IN_GAPS
(see ​3.1​), a “skeleton” field to set the initial code with gaps, identified as
{{gap}}​ (see ​3.2​), and the Assessment Facet specifies the requirements
(see ​3.3​). See ​Appendix 1​.

Mixed code YAPExIL has a “type” of exercise field, which can be SORT_BLOCKS
(see ​3.1​), a “skeleton” field which accepts multiple files - the blocks (see

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

14

IO2: Data Exchange Format for Gamified Programming Exercises

3.2​), and the Assessment Facet specifies the requirements (see ​3.3​). See
Appendix 2​.

Show me YAPExIL has a “libraries” field, which can have the API for the limited
instruction set and allows to specify the requirements (see ​3.3​). Visual
feedback can be generated by a tool as of YAPExIL definition (see ​3.4​).
See ​Appendix 3​.

Spot the bug YAPExIL has a “type” of exercise field, which can be SPOT_BUG (see
3.1​), a “skeleton” field to set the initial code with bugs (see ​3.2​), and the
Assessment Facet specifies the requirements (see ​3.3​). For instance, a
static corrector that accepts a line number. See ​Appendix 4​.

4.2.6 Gamified Programming Exercise Modes
Table 4.2.6 Fulfillment of requirements of gamified programming exercise modes

Concept Fulfillment

Shapeshifter A Challenge in GEdIL may reference multiple exercises and have a
“mode” (which can be SHAPESHIFTER) and a “mode parameters” (which
can be the shift time) fields (see ​4.1.2​).

Shortening challenge A Challenge in GEdIL may reference a single exercise and have a “mode”
(which can be SHORTENING) and a “mode parameters” (which can be
the number of lines/characters/etc.) fields (see ​4.1.2​).

Speedup challenge A Challenge in GEdIL may reference a single exercise and have a “mode”
(which can be SPEEDUP) and a “mode parameters” (which can be the
execution time) fields (see ​4.1.2​).

Hack the problem A Challenge in GEdIL may reference multiple exercises, have a “mode”
field (which can be HACK_IT), and a Rule to trigger based on an
evaluation metric (see ​4.1.2​). Additional metrics can be evaluated with a
static corrector (e.g., to detect tricks) (see ​3.3​).

Time bomb A Challenge in GEdIL may reference a single exercise and have a “mode”
(which can be TIME_BOMB) and a “mode parameters” (which can be the
bomb time) fields (see ​4.1.2​).

4.2.7 Badges Granted on Exercise-level
Table 4.2.7 Fulfillment of requirements for badges granted on exercise-level

Concept Fulfillment

Hardworker A Challenge in GEdIL may have a Rule to give a Reward of type BADGE

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

15

IO2: Data Exchange Format for Gamified Programming Exercises

and name “Hardworker”, if certain criteria are met (see ​4.1.2​, ​4.1.3​, and
4.1.4​).

Scientist A Challenge in GEdIL may have a Rule to give a Reward of type BADGE
and name “Scientist”, if certain criteria are met (see ​4.1.2​, ​4.1.3​, and ​4.1.4​).

Keyword A Challenge in GEdIL may have a Rule to give a Reward of type BADGE
and name “Keyword”, if certain criteria are met (see ​4.1.2​, ​4.1.3​, and
4.1.4​). Additional metrics can be evaluated with a static corrector (e.g., to
detect certain keywords) (see ​3.3​).

Straight A Challenge in GEdIL may have a Rule to give a Reward of type BADGE
and name “Straight”, if certain criteria are met (see ​4.1.2​, ​4.1.3​, and ​4.1.4​).
Additional metrics can be evaluated with a static corrector (e.g., to count
loops) (see ​3.3​).

4.2.8 Types of Challenges Spanning Beyond a Single Programming
Exercise
Table 4.2.8 Fulfillment of requirements of types of challenges spanning beyond a single
programming exercise

Concept Fulfillment

Duel A Challenge in GEdIL may reference multiple exercises or challenges,
define its rules and rewards, and have mode DUEL (see ​4.1.2​). A random
challenge with mode DUEL may be picked when requested.

Quest A Challenge in GEdIL may reference multiple exercises and define its
rules and rewards (see ​4.1.2​). A Gamification Layer can have multiple
Challenges (see ​4.1.1​).

Streak Rules and Rewards in GEdIL may be attached to the Gamification Layer
(see ​4.1.1​, ​4.1.3​, and ​4.1.4​).

Story A Challenge in GEdIL may reference multiple exercises or challenges,
define its rules and rewards to reveal content, and generate feedback with
“feedback generators” (see ​4.1.2​).

Tournament A Gamification Layer in GEdIL may represent a tournament as
Leaderboards, Challenges, and Rewards can be attached (see ​4.1.1​). For
the same reasons, a Challenge in GEdIL may represent a tournament.

Mystery Track A Challenge in GEdIL may reference multiple exercises or challenges,
define its rules and rewards to reveal content (see ​4.1.2​).

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

16

IO2: Data Exchange Format for Gamified Programming Exercises

4.2.9 Badges Available on Course-level
Table 4.2.9 Fulfillment of requirements of badges available on course-level

Concept Fulfillment

Solver A Gamification Layer in GEdIL may have a Rule to give a Reward of type
BADGE and name “Solver”, if certain criteria are met - refer to the number
of exercises solved without wrong submissions in a row (see ​4.1.2​, ​4.1.3​,
and ​4.1.4​).

Man of Duty A Gamification Layer in GEdIL may have a Rule to give a Reward of type
BADGE and name “Man of Duty”, if certain criteria are met - refer to the
number of time units the player's streak lasts (see ​4.1.2​, ​4.1.3​, and ​4.1.4​).

Runner A Gamification Layer in GEdIL may have a Rule to give a Reward of type
BADGE and name “Runner”, if certain criteria are met - check if it is the
first (second, third) player who met it (see ​4.1.2​, ​4.1.3​, and ​4.1.4​).

Explorer A Gamification Layer in GEdIL may have a Rule to give a Reward of type
BADGE and name “Explorer”, if certain criteria are met - refer to the
number of hidden content elements uncovered in a course (see ​4.1.2​, ​4.1.3​,
and ​4.1.4​).

Pathfinder A Gamification Layer in GEdIL may have a Rule to give a Reward of type
BADGE and name “Pathfinder”, if certain criteria are met - refer to the
number of exercises that the player solved the first (see ​4.1.2​, ​4.1.3​, and
4.1.4​).

5. Appendices
5.1 Partial Implementation for Fill-in the Gap Exercise
This partial implementation aims to highlight the implementation details of a Fill-in the Gap exercise
that differ from standard exercise types.

Consider an introductory exercise of Java,

Complete the following program so that it writes “Hello, World!”.

The author of the exercise needs to select ​FILL_IN_GAPS ​in the Type field of the exercise, and
provide a Skeleton with the gaps identified with ​{{gap}}​. Example,

class HelloWorld

{

 public static void main(String args[])

 {

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

17

IO2: Data Exchange Format for Gamified Programming Exercises

 System.out.​{{gap}}​("Hello, World");
 }

}

5.2 Partial Implementation for Mixed Code Exercise
This partial implementation aims to highlight the implementation details of a Mixed Code exercise that
differ from standard exercise types.

Consider the following Python exercise,

Complete the following program to implement heap sort by sorting the provided blocks of
code

def heapify(nums, heap_size, root_index):

 # insert blocks here

def heap_sort(nums):

 n = len(nums)

 for i in range(n, -1, -1):

 heapify(nums, n, i)

 for i in range(n - 1, 0, -1):

 nums[i], nums[0] = nums[0], nums[i]

 heapify(nums, i, 0)

The author of the exercise needs to select ​SORT_BLOCKS ​in the Type field of the exercise, and
provide multiple Skeletons corresponding to code blocks. Example,

SKELETON 1
largest = root_index

left_child = (2 * root_index) + 1

right_child = (2 * root_index) + 2

SKELETON 2
if left_child < heap_size and nums[left_child] > nums[largest]:

 largest = left_child

SKELETON 3
if right_child < heap_size and nums[right_child] > nums[largest]:

 largest = right_child

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

18

IO2: Data Exchange Format for Gamified Programming Exercises

SKELETON 4
if largest != root_index:

 nums[root_index], nums[largest] = nums[largest], nums[root_index]

 heapify(nums, heap_size, largest)

Note: the code provided in the statement should be inserted in a Template with​ {{code}}​ in the
place to insert blocks. However, this is common to other exercises using a template.

5.3 Partial Implementation for Show Me Exercise
This partial implementation aims to highlight the implementation details of a Show Me exercise that
differ from standard exercise types.

Consider an introductory exercise of Java,

Print the points that form a straight line at an angle of 90° to the given line, with exactly the
same length and center (the first point to print is the one with lower x or, if x is equal, lower
y). The input/output should follow this format

start_x start_y end_x end_y
Example

Input​: 2 4 6 4
Output​: 4 2 4 6

The author of the exercise needs to provide a Feedback Generator that prints instructions to play the
animation in VIMo (Vectors In Motion) ​[5]​, a format defined for this purpose. Example of output
would be,

{

 "title": "Perpendicular Line",

 "width": 10,

 "height": 10,

 "fps": 1,

 "frames": [

 {

 "items": [

 {

 "type": "L",

 "content": {

 "x1": "2", "y1": "4", "x2": "6", "y2": "4",

 "attrs": { "stroke": "#000000" }

 }

 }

]

 },

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

19

IO2: Data Exchange Format for Gamified Programming Exercises

 {

 "items": [

 {

 "type": "L",

 "content": {

 "x1": "2", "y1": "4", "x2": "6", "y2": "4",

 "attrs": { "stroke": "#000000" }

 }

 },

 {

 "type": "L",

 "content": {

 "x1": "4", "y1": "2", "x2": "4", "y2": "6",

 "attrs": { "stroke": "#ff0000" }

 }

 }

]

 }

]

}

5.4 Partial Implementation for Spot the Bug Exercise
This partial implementation aims to highlight the implementation details of a Spot the Bug exercise
that differ from standard exercise types.

Consider an exercise of Python,

Identify the bugged lines in the given Quicksort implementation.

The author of the exercise needs to select ​SPOT_THE_BUG ​in the Type field of the exercise, and
provide a Skeleton with the wrong code. Example,

def partition(nums, low, high):

 pivot = nums[(low + high) // 2]

 i = ​high + 1
 j = ​low - 1
 while True:

 i += 1

 while nums[i] < pivot:

 i += 1

 j -= 1

 while nums[j] > pivot:

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

20

IO2: Data Exchange Format for Gamified Programming Exercises

 j -= 1

 if i >= j:

 return j

 nums[i], nums[j] = nums[j], nums[i]

def quick_sort(nums):

 def _quick_sort(items, low, high):

 if low < high:

 split_index = partition(items, low, high)

 _quick_sort(items, low, split_index)

 _quick_sort(items, split_index + 1, high)

 _quick_sort(nums, 0, len(nums) - 1)

The Solution would be a plain text file with the bugged line numbers. Example,
3

4

A Static Corrector could be a shell script as follows,
if ! diff -q $1 $2 &>/dev/null; then

 exit 2 # code for Wrong Answer

fi

executed with the following Command Line
./static_corrector.sh $attempt $solution

6. References
[1] Queirós, R., & Leal, J. P. (2011). Pexil: Programming exercises interoperability language. In

Conferência Nacional XATA: XML, aplicações e tecnologias associadas, 9. ª​ (pp. 37-48).
ESEIG.

[2] Swacha, J., Queirós, R., Paiva, J. C., & Leal, J. P. (2019). Defining Requirements for a
Gamified Programming Exercises Format. In ​23rd International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems​, Budapest, Hungary. (to
appear).

[3] FGPE Consortium (2020). Yet Another Programming Exercise Interoperability Language.
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/yapexil.schema
.json​ Last updated at 2020-01-30.

[4] FGPE Consortium (2020). Gamified Education Interoperability Language.
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/gedil.schema.js
on​ Last updated at 2020-01-30.

[5] FGPE Consortium (2020). Vectors In Motion.
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/vimo.schema.js
on​ Last updated at 2020-01-30.

[6] FGPE Consortium (2019). IO1: Gamification Scheme for Programming Exercises.
http://fgpe.usz.edu.pl/wp-content/uploads/FGPE_IO1_Gamification_Scheme_for_Programmin
g_Exercises.pdf​ Last updated at 2019-05-25.

FGPE: Framework for Gamification Programming Education Erasmus+ Strategic Partnership Project

21

https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/yapexil.schema.json
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/yapexil.schema.json
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/gedil.schema.json
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/gedil.schema.json
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/vimo.schema.json
https://github.com/FGPE-Erasmus/format-specifications/blob/master/schemas/vimo.schema.json
http://fgpe.usz.edu.pl/wp-content/uploads/FGPE_IO1_Gamification_Scheme_for_Programming_Exercises.pdf
http://fgpe.usz.edu.pl/wp-content/uploads/FGPE_IO1_Gamification_Scheme_for_Programming_Exercises.pdf

